CYCLOPROPYLPHENYLCARBENE - THERMAL CONTROL OF INTERMOLECULAR ADDITION

Robert A. Moss* and William P. Wetter

Wright and Rieman Laboratories, Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903

Summary. At 25' , photolytically generated cyclopropylphenylcarbene affords phenylcyclobutene (63%, by ring expansion), phenylacetylene (16%, by fragmentation), and only traces (~3%) of the adduct to isobutene; at lower temperatures, however, the latter compound becomes the major product.

It has been reported that cyclopropylphenylcarbene (1) generated photolytically from diazoalkane 2 in "unsaturated hydrocarbons [at 25°] resulted in nearly quantitative conversion into 1-phenylcyclobutene" (3).¹ We find, however, that intermolecular additions of 1 become prominent and, at least in one case, dominant reactions at lower temperatures.

Cyclopropylphenyldiazomethane² was irradiated (Rayonet reactor or Oriel focussed lamp, NH3-washed Pyrex vessels, A>3000 nm) in isobutene at various temperatures. A preparative run (5.1 mmol of 2 in 15 ml of isobutene and 1.5 ml of pentane) at -77° afforded four products, isolated by gc on Carbowax 20M at 150°; eq. (1). Products $3, \frac{3}{4}, \frac{4}{1}$, $\frac{1}{7}$ and 6 were identified by nmr

spectroscopy and $(3 \text{ and } 6)$ comparisons to authentic samples. Major product $1,1$ -dimethyl-2cyclopropyl-2-phenylcyclopropane, 5 , was characterized by a satisfactory elemental analysis and its definitive nmr spectrum.⁵

Table I records mean absolute product yields for reaction (1) at various temperatures, as well as mean values of the ratios of intramolecular rearrangement to intermolecular addition $[4/5]$. Yields of ketone 6 were quite low when T>-40°, but rose to ~8% at -77°. Accordingly, reaction mixtures for $T < -77^\circ$ runs were degassed before irradiation. Photolyses were generally carried to completion (bleaching of the red color of 2); interrupted reactions, quenched with maleic anhydride, afforded similar $4/5$ ratios. 6

Yields of $\frac{3}{2}$ and $\frac{4}{2}$ decrease, whereas that of $\frac{5}{2}$ increases as solution reaction temperatures are lowered. The $4/5$ distribution shifts by an overall factor of -94 , from strongly in favor of 4 (25°) to moderately in favor of 5 (-128°). These trends are reversed at -150° and -196°, with $\frac{4}{3}$ once again dominant. In -196° (matrix) reactions, we suspect that mobility restrictions imposed upon the carbene⁷ disfavor intermolecular addition, relative to intramolecular rearrangement.⁸ A similar phenomenon may operate in the -150° runs, where crystallites of isobutene (mp -140°) doped with 2 may exist in suspension in propane. Importantly, we observed no new products in the -196° matrix reactions, so that 1 differs markedly from phenylmethylcarbene, 8 diphenylcarbene,⁹ and fluorenylidene,¹⁰ all of which afford mainly abstraction-recombination intermolecular products in -196° isobutene matrices.

Analysis of the 4/5 ratios (Table I) reveals a satisfactory Arrhenius relation between ring expansion and addition reactions: $\ln[4/5]$ vs. 1/T is linear for the 7 solution points, \underline{r} = 0.965, significant at the 99.9% confidence level, with slope $(\Delta E_{apparent}^a) = -1.34$ kcal/mol. This suggests that the partition between 4 and 5 results from competitive reactions with different activation energies. We can readily conceive of three competitive situations.

(a) Products 4 and 5 arise from competitive intramolecular and intermolecular reactions of singlet 1. The data require E^a for ring expansion to exceed E^a for addition by ~1.3 kcal/mol. This is not impossible, but we note that E^{α} expansion itself should be quite low; a value of 3.8 $kcal/mol$ has been calculated for the parent singlet cyclopropylcarbene.¹¹

(b) Cyclobutene $\frac{4}{3}$ stems from ring expansion of singlet $\frac{1}{4}$, whereas $\frac{5}{2}$ mainly forms from addition reactions of <u>triplet</u> 1. Ring expansion can certainly be associated with singlet $\underline{1}.^{11}$ Moreover, the ground states of phenylcarbene¹² and (probably) cyclopropylcarbene^{11,13} are triplets, so that the ground state of 1 may well also be triplet. If an equilibrium is rapidly established between singlet and triplet $1,1^{\downarrow\prime}$ then as long as the $\Delta E^{\texttt{a}}$ between triplet addition and singlet ring expansion is less than the difference in energy between singlet and triplet $\frac{1}{1}$, addition will gain, relative to expansion, as temperature decreases; the increase in triplet population will more than offset the higher activation energy needed for addition.

To test triplet involvement in the formation of 5, diazoalkane 2 was photolyzed in transand <u>cis</u>-butene at -77°. Phenylcyclobutene was the major product in both cases,¹⁵ but the appropriate cyclopropanes were also formed.¹⁶ Addition of <u>2</u> to <u>trans</u>-butene was stereospecific, but cis-butene afforded 7.5% of the trans-butene adduct (relative to the total of cyclopropane products). Diazoalkane 2 was also photolyzed in trans-dichloroethene (diluted with pentane) at -40° and -65°. Gc and nmr analyses indicated the formation of cyclopropanation product but not of the rearranged olefins (i.e., RR'C = CHCHCl₂) anticipated for triplet additions to dichloroethene.¹⁷ Finally, we note again the absence of abstraction-recombination product from $\underline{1}$ and

	$-$ Yield $(\%)^b$.						
Temp. $(^{\circ}C)$	Runs	$\overline{3}$	$\frac{4}{3}$	$\overline{2}$	6	Total yield of volatiles	$\left[\frac{4}{5}\right]^{\circ}$
25	$\overline{2}$	16	63	2.8	$2.5^{\rm d},^{\rm e}$	$86^{\rm d}$	22.5 ± 1.1
$\mathbf 0$	3	16	57	4.8	$2.7^{\rm d,e}$	89 ^d	11.9 ± 0.4
-18	$\overline{2}$	16	52	7.4	$3.3^{d,e}$	$85^{\rm d}$	7.1 ± 0.2
-40	\overline{c}	12	52	15	$4.9^{\rm d,e}$	90 ^d	3.4 ± 0.05
-77	$3 + 5$ ^{f}	3.9	27	34	1.9^{8}	69	0.76 ± 0.08
-95	$\mathbf{1}$	7.0	18	39	1.7^{8}	66	0.46
-128	3	4.4	10	42	3.3^8	60	0.24 ± 0.003
$-150^{\rm h}$	3	1.3	9.9	3.4	3.0^8	18	3.1 ± 0.9
$-196^{\textbf{i}}$	$\overline{2}$	j	j	j	j	j	9.0 ± 0.5

Table I. Products from the Photolysis of Diazoalkane 2 in Isobutene^a

^aPhotolyses were carried out on solutions of 90 mg of 2 in 10-11 g of isobutene. Quantitative gc analysis: $2 \text{ m} \times 6.35 \text{ mm}$, 5% Carbowax 20M on 60/80 GCR column, 125° (inj., 115°; det., 170°), He flow, 50 ml/min. Retention times (min) were: 3 , 5; 4 , 14; 5 , 16.8; and naphthalene (internal std.), 28. Ketone $\underline{6}$ was eluted by temperature programming (20°/min to 200°) after elution of naphthalene. Absolute yields of volatiles were determined against naphthalene by gc integration. Relative peak areas (corrected for detector response) were reproducible to 2-4%. ^bMean values of absolute yields of the indicated number of reactions. $\text{``Mean values of } [\frac{4}{5}]$ yield ratios of all reactions at this temperature; errors are average de-
viations. Single experiment. Seaction mixture not degassed. Inree experiments were viations. $d_{\text{Single experiment.}}$ experiment. $e_{\text{Reaction mixture not degassed.}}$ photolyzed to completion; 5 experiments were interrupted at various times. Yields are based only on completed experiments, but the reported $\frac{4}{5}$ ratio is an average of all 8 experiments.
⁸Reaction mixtures were freeze-thaw degassed. $\frac{h}{2}$ hamples were diluted with 38-40% (wt.) of $g_{\text{Reaction mixtures were free ze-thaw degassed.}}$ propane. ¹Solid matrix of isobutene. ¹Absolute yields were not determined.

isobutene $[i.e., c-G_3H_5PhCHCH_2C(CH_3)=CH_2$ under any of the reaction conditions of Table I, despite the rather typical formation of such products from triplet arylcarbenes and alkenes at very low temperatures or in olefinic matrices. $8-10$, 21

The overall weight of evidence does not seem to support a mainly triplet origin for the adducts of 1. The observed non-stereospecificity in addition to cis-butene is in keeping with some triplet intervention at *-JJ',* but the data do not permit us to quantify this. The lack of olefin formation from 1 and dichloroethene, together with the absence of abstraction-recombination product in the matrix experiments, suggest that triplet involvement is limited.

(c) Finally, there is the possibility that 4 arises largely by rearrangement of photoexcited singlet $\underline{1}$, whereas $\underline{5}$ stems from addition of conventional singlet $\underline{1}$ (and perhaps some triplet $\underline{1}$). Presently, there is no evidence for or against these suggestions, but we note recent invocations of excited state participants in such typical carbene reactions as intramolecular insertion, 18 1,2-dimethyl migration,¹⁹ and even intermolecular addition,²⁰ We are continuing our studies of cyclopropylphenylcarbene, hoping to further clarify the mechanistic details of its chemistry.

Acknowledgment. We thank the National Science Foundation for support of this work.

REFERENCES AND NOTES

- (1) P. C. Petrellis, G. W. Griffin, M. E. Hendrick, and M. Jones, Jr., Chem. Commun., 1002 (1972).
- (2) J. G. Bennet, Jr., and S. C. Bunce, <u>J. Org. Chem</u>., 25, 73 (1960).
- (3) P. Jouve, <u>Compt. Rend. Acad. Sci. (Paris), Ser. C</u>, <u>256</u>, 1497 (1963).
- (4) J.-L. Derocque, F.-B. Sundermann, N. Youssif, and M. Hanack, <u>Annalen</u>, 419 (1973).
- (5) δ (CCl₄, CH₂Cl₂ as secondary internal standard): 0.03-0.67 (m, 6H, cyclopropyl CH₂); 0.7 *(s,* 3H, CH3); 0.97-1.37 (m, lH, cyclopropyl CH); 1.37 (s, 3H, CH3); 7.28 ("s", 5H, aryl).
- (6) Quenching of an isobutene solution of 2 with maleic anhydride afforded <2% of $\frac{1}{2}$ or $\frac{5}{2}$.
- (7) H. Tomioka, <u>J. Am. Chem. Soc</u>., <u>101</u>, 256 (1979).
- *(8)* A similar interpretation can be accorded the increase in styrene (intramolecular product) relative to intermolecular products when phenylmethylcarbene is generated in an isobutene matrix at -196° : R. A. Moss and M. A. Joyce, <u>J. Am. Chem. Soc</u>., 99 , 1262 (1977).
- (9) R. A. Moss and J. K. Huselton, <u>J. Am. Chem. Soc</u>., <u>100</u>, 1314 (1978).
- (10) R. A. Moss and M. A. Joyce, <u>J. Am. Chem. Soc</u>., <u>100</u>, 4475 (1978).
- (11) W. W. Schoeller, J. Org. Chem., 45, 2161 (1980).
- (12) A. M. Trozzolo and E. Wasserman in "Carbenes", Vol. 2, R. A. Moss and M. Jones, Jr., Ed., Wiley, New York, 1975, pp. 185f., and references therein.
- (13) R. Hoffmann, G. D. Zeiss, and G. W. Van Dine, <u>J. Am. Chem. Soc</u>., <u>90</u>, 1485 (1968).
- (14) This seems to be the case for Ph₂C [G. L. Closs and B. E. Rabinow, <u>J. Am. Chem. Soc</u>., 98, 8190 (1976)] and perhaps also for PhCH [T. Baer and C. D. Gutsche, $\underline{ibid.}$, 93, 5180 (1971)].
- (15) The gc ratios (conditions of Table I) of $\frac{4}{ }$ to addition products were 1.9:1 (<u>trans</u>-buten and -5:l (cis-butene). Cis-butene afforded a pair of syn-phenyl and anti-phenyl cyclepropane isomers in a distribution of $1.3:1.$
- (16) These cyclopropanes were characterized by acceptable elemental analyses and structurally consistent nmr spectra.
- (17) Reaction of ³Ph₂C with <u>trans</u>-dichloroethene gives mainly Ph₂C=CHCHCl₂, as well as a Cyclopropane: P. P. Gaspar, B. L. Whitsel, M. Jones, Jr., and J. B. Lambert, J. Am. Chem. Soc., in press.
- *(18)* H. Tomioka, H. Kitagawa, and Y. Izawa, J. Org. Chem., 44, 3072 (1979).
- (19) K.-T. Chang and H. Schechter, <u>J. Am. Chem. Soc</u>., <u>101</u>, 5082 (1979).

(relative to ring expansion) over a comparable temperature range.

(20) (21) that ucts from <u>1</u> and isobutene in an isobutene matrix at -196°C, whereas a-r is the dominant inter-G. R. Chambers and M. Jones, Jr., <u>J. Am. Chem. Soc</u>., <u>102</u>, 4516 (1980).
A referee has asked whether the low temperature reactivity of <u>1</u> differs significantly from that of PhCCH₃.⁸ Key differences include: the absence of abstraction-recombination (a-r) prodmolecular process of PhCCH₃ under these conditions. Also, PhCCH₃ adds to isobutene with ~con-
stant efficiency from -40⁰ to -120⁰C.⁸ whereas the addition efficiency of 1 increases 14-fold stant efficiency from -40° to -120°C,° whereas the addition efficiency of $\underline{1}$ increases 14-fold

(Received in USA 23 September 1980)